
Parallelisable
Recurrent
Sequence
Models

2025-02-06
OccaMLab X OatML Joint Group Seminar

Outline

1. Definitions
2. Papers:

a. [parallel scan] Blelloch, Guy E. "Prefix sums and their applications." (1990).
b. Martin, Eric, and Chris Cundy. "Parallelizing linear recurrent neural nets over sequence length."

arXiv preprint arXiv:1709.04057 (2017).
c. Feng, Leo, et al. "Were rnns all we needed?." arXiv preprint arXiv:2410.01201 (2024).
d. [linear attention] Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive

transformers with linear attention." International conference on machine learning. PMLR, 2020.
e. [LSSL] Gu, Albert, et al. "Combining recurrent, convolutional, and continuous-time models with

linear state space layers." Advances in neural information processing systems 34 (2021): 572-585.
f. [S4] Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with

structured state spaces." arXiv preprint arXiv:2111.00396 (2021).
g. [S5] Smith, Jimmy TH, Andrew Warrington, and Scott W. Linderman. "Simplified state space layers for

sequence modeling." arXiv preprint arXiv:2208.04933 (2022).
h. [Mamba] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state

spaces." arXiv preprint arXiv:2312.00752 (2023).
i. [Mamba 2] Dao, Tri, and Albert Gu. "Transformers are SSMs: Generalized models and efficient

algorithms through structured state space duality." arXiv preprint arXiv:2405.21060 (2024).
j. Orvieto, Antonio, et al. "Resurrecting recurrent neural networks for long sequences." International

Conference on Machine Learning. PMLR, 2023.
k. Lu, Chris, et al. "Structured state space models for in-context reinforcement learning." Advances

in Neural Information Processing Systems 36 (2024).

Definitions

1. Associativity
2. Sequence model
3. Recurrent sequence model
4. Parallelisable sequence model

Associativity

● S = {s1, s2, ...}
● Binary operation:
● f: S × S -> S
● f(x, y) = x
● x ∘ y = z

Associativity

● Associative binary operation (∀ x,y,z):
● (x ∘ y) ∘ z
● = x ∘ (y ∘ z)
● = x ∘ y ∘ z
● -> “Generalized associative law”, EG:
● ((((u ∘ v) ∘ w) ∘ x) ∘ y) ∘ z
● = u ∘ (v ∘ (w ∘ (x ∘ (y ∘ z))))
● = u ∘ v ∘ w ∘ x ∘ y ∘ z
● Result ⟂ order of brackets
● Compute in any order [in time]

Associativity

● Examples:
● x + y
● x * y
● "hello " + "world"
● = "hello world"
● Counterexamples:
● x - y
● x / y
● 2(x + y)

(x ∘ y) ∘ z
= 2(2x + 2y) + 2z
= 4x + 4y + 2z

x ∘ (y ∘ z)
= 2x + 2(2y + 2z)
= 2x + 4y + 4z

Sequence model

● f:
● ordered, variable-length input x1:T
● learnable parameters w
● x = text, video, POMDP (RL) states, ...

yt = f(x1, x2, ..., xt; w)

Recurrent sequence model

● Input -> hidden state -> output
● ht = f(xt, ht-1)
● yt = g(ht)
● EG RNN (<1997), LSTM (1997), GRU (2014)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent sequence model

● Input -> hidden state -> output
● Length N sequence:
● Inference : O(1) space 🙂
● Training : O(N) space 🫤 (BPTT)
● Sequential -> hard to parallelise 🙁

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

● ⟂ hidden states -> compute in parallel
● Fast training on GPUs* 🙂
● *When data is pre-generated (not in RL 🫤)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

● Transformers (2017):
● qt, kt, vt = fqkv(xt)
● wt = fw(qt, k1:T)
● at = fa(wt, v1:T)
● yt = fy(xt, at)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Query, key, value
Attention weights
Attention
Output

● Transformers (2017):
● ai ⟂ aj -> parallelise
● fw, fa -> long range dependencies (LRD)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Paralleli
sableRecurrent

Fast
training

Efficient
inference

Paralleli
sableRecurrent

MinLSTM,MinGRU
Linear Attention
LSSL,S4,S5,Mamba

Transformers
(in general)RNN,LSTM,GRU

Blelloch, Guy E. "Prefix sums and
their applications." (1990).

Blelloch, Guy E. "Prefix sums and
their applications." (1990).

Feng, Leo, et al. "Were rnns all we
needed?." arXiv preprint
arXiv:2410.01201 (2024).

Smith, Jimmy TH, Andrew Warrington, and
Scott W. Linderman. "Simplified state
space layers for sequence modeling."
arXiv preprint arXiv:2208.04933 (2022).

Gu, Albert, and Tri Dao. "Mamba:
Linear-time sequence modeling with
selective state spaces." arXiv preprint
arXiv:2312.00752 (2023).

Prefix sums and their applications

● ⊕ : associative binary operator
● I⊕ : identity of ⊕, IE (∀a) a ⊕ I = a
● [a0, a1, ..., an-1]⊕ : input sequence

Prefix sums and their applications

● `reduce`:
● apply ⊕ to full sequence
● reduce(a) = a0 ⊕ a1 ⊕ ... ⊕ an-1

Prefix sums and their applications

● `scan`:
● scan(a) = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
● scan(a)i = reduce([a0, ..., ai)
● scan(a)n-1 = reduce(a)
● CF numerical integration, `numpy.cumsum` etc

scan

15

Prefix sums and their applications

● `scan`:
● scan(a) = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
● scan(a)i = reduce([a0, ..., ai)
● scan(a)n-1 = reduce(a)
● CF numerical integration, `numpy.cumsum` etc
● Parallel `scan` = focus of paper

“... a good example of a computation that seems inherently sequential,
but for which there is an efficient parallel algorithm.”

Prefix sums and their applications

● Parallel reduce: “up-sweep”

Prefix sums and their applications

● Parallel reduce: “up-sweep”
● Up-sweep -> (partial) scan results:

3 = scan(a)0

4 = scan(a)1

11 = scan(a)3

25 = scan(a)7

Prefix sums and their applications

● Parallel scan:
● Up-sweep : sum(all descendent leaves)
● Down-sweep : sum(all preceding leaves)
● “preceding” = left of all descendent leaves

Prefix sums and their applications

● Parallel scan:
● Up-sweep : PU = LU ⊕ RU # Parent : sum of children
● Down-sweep : LD = PD ⊕ # Left : copy parent
● RD = PD ⊕ LU # Right : parent + left-US

LU RU

PU

LD RD

PD

Prefix sums and their applications

● Parallel scan:

leafi
U = ai

rootD = I scani = leafi
D ⊕ ai

“prescani”

Prefix sums and their applications

● Parallel scan:

Prefix sums and their applications

● Scan = recurrence:
● xi = a0 ⊕ a1 ⊕ ... ⊕ ai
● xi = { a0 ⊕ i = 0
● { xi-1 ⊕ ai 0 < i < n
● Also parallelisable:
● xi = { b0 i = 0
● { aixi-1 + bi 0 < i < n
● Proof sketch...

Prefix sums and their applications

● xi = aixi-1 + bi
● = ai(ai-1xi-2 + bi-1) + bi # Expand xi-1
● = (aiai-1)xi-2 + (aibi-1 + bi) # Collect
● Define:
● ci = [ai, bi]
● cj ● ci = [aiaj, aibj + bi] # ● is associative
● # (proof in paper)
● si-1 = [Ai-1, xi-1]
● Ai = aiAi-1
● => si-1 ● ci = [aiAi-1, aixi-1 + bi]
● = [Ai, xi]
● = si # “scan” recurrence

Martin, Eric, and Chris Cundy.
"Parallelizing linear recurrent

neural nets over sequence
length." arXiv preprint
arXiv:1709.04057 (2017).

Martin, 2017

● Recognise connection RNN : parallel scan (!)
● Classify parallelisable RNNs, EG QRNN [1]
● Implement parallel scan CUDA kernel, 9x speed-ups
● Linear recurrence:
● Only linear within each layer
● Stack multiple layers + nonlinearities
● ⇒ Nonlinear dependence on past input tokens

[1] Bradbury, James, et al. "Quasi-recurrent neural
networks." arXiv preprint arXiv:1611.01576 (2016).

Martin, 2017

● Introduce GILR: linear recurrence + nonlinear gating

Martin, 2017

● Results >> LSTM (limited experiments)

Feng, Leo, et al. "Were rnns all
we needed?." arXiv preprint
arXiv:2410.01201 (2024).

Were rnns all we needed?

● Derive simplified LSTM/GRU (“MinLSTM/MinGRU”):
● (1) Fewer parameters
● (2) Parallelisable training
● (3) “surprisingly competitive performance” (abstract)
● NB only MinLSTM vs MinGRU difference:
● forget and input gates (MinLSTM)
● single gate (MinGRU)

Were rnns all we needed?

Were rnns all we needed?

Were rnns all we needed?

● “Notably, minGRU is equivalent to GILR but without an
activation function” ... !?

“GILR” Martin, Eric, and Chris Cundy.
"Parallelizing linear recurrent neural nets
over sequence length." arXiv preprint
arXiv:1709.04057 (2017).

“minGRU” Feng, Leo, et al. "Were rnns all we
needed?." arXiv preprint arXiv:2410.01201
(2024).

Were rnns all we needed?

● Linear recurrence/expressivity:
● 1st layer gates
● = f(current input)
● ≠ f(previous input)
● 1st layer output = f(previous input)
● -> 2+ layer gates = f(previous input)

Were rnns all we needed?

● Selective copy + RL results: reasonable

Katharopoulos, Angelos, et al.
"Transformers are rnns: Fast

autoregressive transformers with
linear attention." International
conference on machine learning.

PMLR, 2020.

Linear attention

● Self-attention = linear dot-product of kernel feature maps
(not softmax)

● Associativity: O(N2) -> O(N)
● “Our linear transformers achieve similar performance to

vanilla transformers and they are up to 4000x faster on
autoregressive prediction of very long sequences”

Linear attention

● Softmax attention:

Linear attention

● “Similarity” attention (generalisation):

Linear attention

● “Kernel” attention (separable similarity):

Linear attention

● “Transformers are RNNs”

Accumulate
attention
memory

Accumulate
“normaliser”
memory

Compute output

Associative,
recurrent ->
parallelisable
(parallel scan)

Linear attention

● Results: speed = great, performance = reasonable (limited
comparisons)

Linear attention

● Results: speed = great, performance = reasonable (limited
comparisons)

Linear attention

● Results: speed = great, performance = reasonable (limited
comparisons)

Gu, Albert, et al. "Combining
recurrent, convolutional, and
continuous-time models with
linear state space layers."

Advances in neural information
processing systems 34 (2021):

572-585.

Linear state space layers

● Stacked layers of linear state space models
● Position-wise nonlinearities between layers
● Well established theory
● EG (input : output) ~ convolution (impulse response)

Linear state space layers

● Stacked layers of linear state space models
● Generalises RNNs + CNNs
● Preserve information in LRDs (“continuous time

memorization”)

Linear state space layers

● Discrete approximation for continuous linear SSM
● Recurrence or convolution (can parallelise with FFT)

Linear state space layers

● HIPPO theory: choose `A` (closed form) to provably
memorise LRD

Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial projections." Advances
in neural information processing systems 33 (2020): 1474-1487.

Linear state space layers

● Strong results (selected problems)
● s/p = sequential/permuted
● Limitation: space complexity

Gu, Albert, Karan Goel, and
Christopher Ré. "Efficiently
modeling long sequences with

structured state spaces." arXiv
preprint arXiv:2111.00396 (2021).

S4

● LSSL: high space complexity
● S4: efficient reparameterisation of SSM
● Condition `A` with low-rank correction
● -> Stable diagonalisation
● Strong results:
● “SoTA on every task from the Long Range Arena”
● “as efficient as all competitors”
● “closing the gap to Transformers... performing

generation 60× faster”

S4

● Parameterise `A` as NPLR
● Normal: commutes with transpose
● EG orthogonal, symmetric
● -> Efficient computation using Woodbury identity

S4

● Results:

S4

● Results:

S4

● HIPPO initialisation = important

Smith, Jimmy TH, Andrew
Warrington, and Scott W.

Linderman. "Simplified state
space layers for sequence
modeling." arXiv preprint
arXiv:2208.04933 (2022).

S5

● Smith, Jimmy TH, Andrew Warrington, and Scott W.
Linderman. "Simplified state space layers for sequence
modeling." arXiv preprint arXiv:2208.04933 (2022).
○ Replace many independent SISO SSMs (S4) with one MIMO SSM
○ Train with parallel scan
○ “match the computational efficiency of S4, while also achieving

state-of-the-art performance on several long-range sequence modeling
tasks”

Gu, Albert, and Tri Dao. "Mamba:
Linear-time sequence modeling
with selective state spaces."
arXiv preprint arXiv:2312.00752

(2023).

MAMBA

● Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence
modeling with selective state spaces." arXiv preprint
arXiv:2312.00752 (2023).

● SSM params = f(input)
● Train with parallel scan + CUDA kernel fusion
● No attention/MLP blocks
● “On language modeling, our Mamba-3B model outperforms

Transformers of the same size and matches Transformers
twice its size”

Dao, Tri, and Albert Gu.
"Transformers are SSMs:

Generalized models and efficient
algorithms through structured
state space duality." arXiv

preprint arXiv:2405.21060 (2024).

Orvieto, Antonio, et al.
"Resurrecting recurrent neural
networks for long sequences."
International Conference on
Machine Learning. PMLR, 2023.

Lu, Chris, et al. "Structured
state space models for in-context
reinforcement learning." Advances
in Neural Information Processing

Systems 36 (2024).

