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Definitions

1. Associativity
2. Sequence model
3. Recurrent sequence model
4. Parallelisable sequence model



Associativity

● S = {s1, s2, ...}
● Binary operation:
●     f: S × S -> S
●     f(x, y) = x
●     x ∘ y = z



Associativity

● Associative binary operation (∀ x,y,z):
●     (x ∘ y) ∘ z
●     = x ∘ (y ∘ z)
●     = x ∘ y ∘ z
● -> “Generalized associative law”, EG:
●     ((((u ∘ v) ∘ w) ∘ x) ∘ y) ∘ z
●     = u ∘ (v ∘ (w ∘ (x ∘ (y ∘ z))))
●     = u ∘ v ∘ w ∘ x ∘ y ∘ z
● Result ⟂ order of brackets
● Compute in any order [in time]



Associativity

● Examples:
●     x + y
●     x * y
●     "hello " + "world"
●     = "hello world"
● Counterexamples:
●     x - y
●     x / y
●     2(x + y)

(x ∘ y) ∘ z
= 2(2x + 2y) + 2z
= 4x + 4y + 2z

x ∘ (y ∘ z)
= 2x + 2(2y + 2z)
= 2x + 4y + 4z



Sequence model

● f:
●     ordered, variable-length input x1:T
●     learnable parameters w
● x = text, video, POMDP (RL) states, ...

yt = f(x1, x2, ..., xt; w)



Recurrent sequence model

● Input -> hidden state -> output
●     ht = f(xt, ht-1)
●     yt = g(ht)
● EG RNN (<1997), LSTM (1997), GRU (2014)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent sequence model

● Input -> hidden state -> output
● Length N sequence:
●     Inference : O(1) space 🙂
●     Training  : O(N) space 🫤 (BPTT)
● Sequential -> hard to parallelise 🙁

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


● ⟂ hidden states -> compute in parallel
● Fast training on GPUs* 🙂
● *When data is pre-generated (not in RL 🫤)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).



● Transformers (2017):
●     qt, kt, vt = fqkv(xt)
●     wt = fw(qt, k1:T)
●     at = fa(wt, v1:T)
●     yt = fy(xt, at)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

# Query, key, value
# Attention weights
# Attention
# Output



● Transformers (2017):
●     ai ⟂ aj -> parallelise
●     fw, fa  -> long range dependencies (LRD)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).
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MinLSTM,MinGRU
Linear Attention
LSSL,S4,S5,Mamba

Transformers
(in general)RNN,LSTM,GRU
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Prefix sums and their applications

● ⊕                  : associative binary operator
● I⊕                 : identity of ⊕, IE (∀a) a ⊕ I = a
● [a0, a1, ..., an-1]⊕ : input sequence



Prefix sums and their applications

● `reduce`:
●     apply ⊕ to full sequence
●     reduce(a) = a0 ⊕ a1 ⊕ ... ⊕ an-1



Prefix sums and their applications

● `scan`:
●     scan(a)    = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
●     scan(a)i   = reduce([a0, ..., ai)
●     scan(a)n-1 = reduce(a)
●     CF numerical integration, `numpy.cumsum` etc

scan

15



Prefix sums and their applications

● `scan`:
●     scan(a)    = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
●     scan(a)i   = reduce([a0, ..., ai)
●     scan(a)n-1 = reduce(a)
●     CF numerical integration, `numpy.cumsum` etc
●     Parallel `scan` = focus of paper

“... a good example of a computation that seems inherently sequential,
but for which there is an efficient parallel algorithm.”



Prefix sums and their applications

● Parallel reduce: “up-sweep”



Prefix sums and their applications

● Parallel reduce: “up-sweep”
● Up-sweep -> (partial) scan results:

3 = scan(a)0

4 = scan(a)1

11 = scan(a)3

25 = scan(a)7



Prefix sums and their applications

● Parallel scan:
●       Up-sweep : sum(all descendent leaves)
●     Down-sweep : sum(all preceding  leaves)
●     “preceding” = left of all descendent leaves

  



Prefix sums and their applications

● Parallel scan:
●       Up-sweep : PU = LU ⊕ RU  # Parent : sum of children
●     Down-sweep : LD = PD ⊕     # Left   : copy parent
●                  RD = PD ⊕ LU  # Right  : parent + left-US

LU RU

PU

LD RD

PD



Prefix sums and their applications

● Parallel scan:

leafi
U = ai

rootD = I scani = leafi
D ⊕ ai

“prescani”



Prefix sums and their applications

● Parallel scan:



Prefix sums and their applications

● Scan = recurrence:
●     xi = a0 ⊕ a1 ⊕ ... ⊕ ai
●     xi = { a0   ⊕       i = 0
●          { xi-1 ⊕ ai    0 < i < n
● Also parallelisable:
●     xi = { b0             i = 0
●          { aixi-1 + bi    0 < i < n
● Proof sketch...



Prefix sums and their applications

● xi = aixi-1 + bi
●    = ai(ai-1xi-2 + bi-1) + bi        # Expand xi-1
●    = (aiai-1)xi-2 + (aibi-1 + bi)    # Collect
● Define:
●     ci        = [ai, bi]
●     cj ● ci   = [aiaj, aibj + bi]  # ● is associative
●                                   # (proof in paper)
●     si-1      = [Ai-1, xi-1]
●     Ai        = aiAi-1
●  => si-1 ● ci = [aiAi-1, aixi-1 + bi]
●               = [Ai, xi]
●               = si                # “scan” recurrence



Martin, Eric, and Chris Cundy. 
"Parallelizing linear recurrent 

neural nets over sequence 
length." arXiv preprint 
arXiv:1709.04057 (2017).



Martin, 2017

● Recognise connection RNN : parallel scan (!)
● Classify parallelisable RNNs, EG QRNN [1]
● Implement parallel scan CUDA kernel, 9x speed-ups
● Linear recurrence:
●     Only linear within each layer
●     Stack multiple layers + nonlinearities
●     ⇒ Nonlinear dependence on past input tokens    

[1] Bradbury, James, et al. "Quasi-recurrent neural 
networks." arXiv preprint arXiv:1611.01576 (2016).



Martin, 2017

● Introduce GILR: linear recurrence + nonlinear gating    



Martin, 2017

● Results >> LSTM (limited experiments)    



Feng, Leo, et al. "Were rnns all 
we needed?." arXiv preprint 
arXiv:2410.01201 (2024).



Were rnns all we needed?

● Derive simplified LSTM/GRU (“MinLSTM/MinGRU”):
●     (1) Fewer parameters
●     (2) Parallelisable training
●     (3) “surprisingly competitive performance” (abstract)
● NB only MinLSTM vs MinGRU difference:
●     forget and input gates (MinLSTM)
●     single gate (MinGRU)



Were rnns all we needed?



Were rnns all we needed?



Were rnns all we needed?

● “Notably, minGRU is equivalent to GILR but without an 
activation function” ... !?

“GILR” Martin, Eric, and Chris Cundy. 
"Parallelizing linear recurrent neural nets 
over sequence length." arXiv preprint 
arXiv:1709.04057 (2017).

“minGRU” Feng, Leo, et al. "Were rnns all we 
needed?." arXiv preprint arXiv:2410.01201 
(2024).



Were rnns all we needed?

● Linear recurrence/expressivity:
●     1st layer gates
●     = f(current  input)
●     ≠ f(previous input)
●     1st layer output = f(previous input)
●  -> 2+  layer gates  = f(previous input)



Were rnns all we needed?

● Selective copy + RL results: reasonable



Katharopoulos, Angelos, et al. 
"Transformers are rnns: Fast 

autoregressive transformers with 
linear attention." International 
conference on machine learning. 

PMLR, 2020.



Linear attention

● Self-attention = linear dot-product of kernel feature maps 
(not softmax)

● Associativity: O(N2) -> O(N)
● “Our linear transformers achieve similar performance to 

vanilla transformers and they are up to 4000x faster on 
autoregressive prediction of very long sequences”



Linear attention

● Softmax attention:



Linear attention

● “Similarity” attention (generalisation):



Linear attention

● “Kernel” attention (separable similarity):



Linear attention

● “Transformers are RNNs”

Accumulate 
attention 
memory

Accumulate 
“normaliser” 
memory

Compute output

Associative, 
recurrent -> 
parallelisable 
(parallel scan)



Linear attention

● Results: speed = great, performance = reasonable (limited 
comparisons)



Linear attention

● Results: speed = great, performance = reasonable (limited 
comparisons)



Linear attention

● Results: speed = great, performance = reasonable (limited 
comparisons)



Gu, Albert, et al. "Combining 
recurrent, convolutional, and 
continuous-time models with 
linear state space layers." 

Advances in neural information 
processing systems 34 (2021): 

572-585.



Linear state space layers

● Stacked layers of linear state space models
● Position-wise nonlinearities between layers
● Well established theory
●     EG (input : output) ~ convolution (impulse response)



Linear state space layers

● Stacked layers of linear state space models
●     Generalises RNNs + CNNs
●     Preserve information in LRDs (“continuous time 

memorization”)



Linear state space layers

● Discrete approximation for continuous linear SSM
● Recurrence or convolution (can parallelise with FFT)



Linear state space layers

● HIPPO theory: choose `A` (closed form) to provably 
memorise LRD

Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial projections." Advances 
in neural information processing systems 33 (2020): 1474-1487.



Linear state space layers

● Strong results (selected problems)
●     s/p = sequential/permuted
● Limitation: space complexity



Gu, Albert, Karan Goel, and 
Christopher Ré. "Efficiently 
modeling long sequences with 

structured state spaces." arXiv 
preprint arXiv:2111.00396 (2021).



S4

● LSSL: high space complexity
● S4: efficient reparameterisation of SSM
●     Condition `A` with low-rank correction
●     -> Stable diagonalisation
● Strong results:
●     “SoTA on every task from the Long Range Arena”
●     “as efficient as all competitors”
●     “closing the gap to Transformers... performing 

generation 60× faster”



S4

● Parameterise `A` as NPLR
●     Normal: commutes with transpose
●     EG orthogonal, symmetric
● -> Efficient computation using Woodbury identity



S4

● Results:



S4

● Results:



S4

● HIPPO initialisation = important
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S5

● Smith, Jimmy TH, Andrew Warrington, and Scott W. 
Linderman. "Simplified state space layers for sequence 
modeling." arXiv preprint arXiv:2208.04933 (2022).
○ Replace many independent SISO SSMs (S4) with one MIMO SSM
○ Train with parallel scan
○ “match the computational efficiency of S4, while also achieving 

state-of-the-art performance on several long-range sequence modeling 
tasks”



Gu, Albert, and Tri Dao. "Mamba: 
Linear-time sequence modeling 
with selective state spaces." 
arXiv preprint arXiv:2312.00752 

(2023).



MAMBA

● Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence 
modeling with selective state spaces." arXiv preprint 
arXiv:2312.00752 (2023).

●     SSM params = f(input)
●     Train with parallel scan + CUDA kernel fusion
●     No attention/MLP blocks
●     “On language modeling, our Mamba-3B model outperforms 

Transformers of the same size and matches Transformers 
twice its size”
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