Parallelisable
Recurrent

Sequence
Models

2025-02-06
OccaMLab X OatML Joint Group Seminar

Outline

1.

Definitions

Papers:

a. [parallel scan] Blelloch, Guy E. "Prefix sums and their applications." (1999).

b. Martin, Eric, and Chris Cundy. "Parallelizing linear recurrent neural nets over sequence length."
arXiv preprint arXiv:1709.040857 (2017).

d. [linear attention] Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive
transformers with linear attention." International conference on machine learning. PMLR, 2020.

e. [LSSL] Gu, Albert, et al. "Combining recurrent, convolutional, and continuous-time models with
linear state space layers." Advances in neural information processing systems 34 (2021): 572-585.

f. [S4] Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with
structured state spaces."” arXiv preprint arXiv:2111.00396 (2021).

g. [S5] Smith, Jimmy TH, Andrew Warrington, and Scott W. Linderman. "Simplified state space layers for
sequence modeling." arXiv preprint arXiv:2208.04933 (2022).

h. [Mamba] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state
spaces." arXiv preprint arXiv:2312.00752 (2023).

i. [Mamba 2] Dao, Tri, and Albert Gu. "Transformers are SSMs: Generalized models and efficient
algorithms through structured state space duality." arXiv preprint arXiv:2405.21060 (2024).

j. Orvieto, Antonio, et al. "Resurrecting recurrent neural networks for long sequences." International
Conference on Machine Learning. PMLR, 2023.

k. Lu, Chris, et al. "Structured state space models for in-context reinforcement learning." Advances

in Neural Information Processing Systems 36 (2024).

Definitions

Associativity

Sequence model

Recurrent sequence model
Parallelisable sequence model

A WODN =

Assoclativity

S =As,, s, ...}

Binary operation:
f: SxS ->8S
f(x, y) = x
X oy =12

Assoclativity

Associative binary operation (V Xx,y,z):
(X °y) ez
= x o (y © 2)
= X) y (e} Z

"

-> “Generalized associative law”, EG:
((((u o v) cw) e x)cey)ez
=u-° (voe(we(xe(y-°2z))))
—U°oVoOWoeXoyozZ

Result L order of brackets

Compute in any order [in time]

Assoclativity

e Examples: (X °y) ° z
o X : y = 2(2x + 2y) + 2z
°)n(yn 1 1 =4X+4y+.
o hello " + "world
° = "hello world"

X o (y ° z)
e Counterexamples: = 2x + 2(2y + 22)
° X -V =2X+4y+.
° X /'y
o 2(x +vy)

Sequence model

f:
ordered, variable-length input x. ..
learnable parameters w

X = text, video, POMDP (RL) states,

Recurrent sequence model

Input -> hidden state -> output
ht - f(Xt' ht—1)

y, = g(h,)
EG RNN (<1997), LSTM (1997), GRU (2014)

o ° o

-
i S S

An unrolled recurrent neural network.
https://colah.github.io/posts/2615-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent sequence model

Input -> hidden state -> output

Length N sequence:
: 0(1) space ©@

Inference
Training

®
L

6

: O(N) space & (BPTT)
Sequential -> hard to parallelise &

—

!

—

!

>

T

A

&6 & 6 ©

An unrolled recurrent neural network.

https://colah.github.io/posts/2015-88-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Parallelisable sequence model

e | hidden states -> compute in parallel

e Fast training on GPUs* ©
[

*When data is pre-generated (not in RL &)

Scaled Dot-Product Attention

Multi-Head Attention
==
==

Add & Norm
Feed
Forward
o>{_Add & Norm |
Add & Norm

Mulli-Head
Attention

Scaled Dot-Product
Attention

| —
Positional @
Encoding

Input
Embedding

Inputs
Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Parallelisable sequence model

e Transformers (2017):

° q., k., v, = quv(xt) # Query, key, value
o wo = f (q,, k;.;) # Attention weights
o a, = f_(w, v,.;) # Attention

o Y, = fy(xt, a.) # Output

Multi-Head Attention

Add & Norm
Feed
Forward

Conat (A Nom)
[(Concat AoaE Nom

Mulli-Head
Attention

Scaled Dot-Product h
Attention
Positional ®
Encoding

Input
Embedding

Inputs

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Parallelisable sequence model

e Transformers (2017):
o a; L a;, -> parallelise
o f,, f, -> long range dependencies (LRD)

Scaled Dot-Product Attention

Multi-Head Attention

Add & Norm
Feed
Forward

o>{_Add & Norm |
Add & Norm

Mulli-Head
Attention

Scaled Dot-Product
Attention

]
Positional @
Encoding

Input
Embedding

Inputs

"Attention is all you need." Advances in Neural Information Processing Systems (2017).

—

Vaswani, A.

Paralleli
sable

Efficient
inference

Fast
training

Paralleli
sable

Transformers

RNN, LSTM, GRU :
(in general)

MinlLSTM, MinGRU

Linear Attention
L SSL, S4,S5, Mamba

Blelloch, Guy E. "Prefix sums and
their applications."” (1990).

Blelloch, Guy E. "Prefix sums and
their applications."” (1990).

Prefix sums and their applications

o © . associative binary operator
o T : identity of o, IE (Va) a ©I = a
e [a,, a, ..., a_.] : input sequence

Prefix sums and their applications

e reduce :
e apply @ to full sequence

o reduce(a) = a, ® a, ® ... © a

0 n-1

Definition: The reduce operation takes a binary associative operator @ with identity i,
and an ordered set [ag, 6, ...,n-1] of n elements, and returns the value whard...0a,_;.

Prefix sums and their applications

e scan :

o scan(a) = [a,, (a,®a), ..., (a,®a, @ ... @a)]
o scan(a), = reduce([a,, ..., a,)

o scan(a)_ . = reduce(a)

o CF numerical integration, "numpy.cumsum etc

For example, if @ is addition, then the scan operation on the ordered set
B 1 7 0 4 1 6 3],

would return

B 4 11 11 15 16 22 25

Prefix sums and their applications

‘scan

scan(a) = [a,, (az® a;), ..., (@ a, @ ... @a)]
scan(a), = reduce([a,, ..., a,)

scan(a) . = reduce(a)

CF numerical integration, "numpy.cumsum etc
Parallel “scan’ = focus of paper

. a good example of a computation that seems inherently sequential,

but for which there is an efficient parallel algorithm.”

Prefix sums and their applications

e Parallel reduce: “up-sweep”

sum[v] = sum[L[v]] + sum{R[v]]

(a) Executing a +-reduce on a tree.

B 1 7 0 4 1 6 3

Prefix sums and their applications

e Parallel reduce: “up-sweep”
e Up-sweep -> (partial) scan results:

25

scan(a)s= —-
25 A

3 *> 11 14

4 = scan(a) —» I n n
1] [7] [o] [4] [t Le] (8

3
3 = scan(a) rad sum{v] = sum{L{v]] + sum[R[v]]

(a) Executing a +-reduce on a tree.

3 1 7 0 4 1 6 3,

11 = scan(a)

Prefix sums and their applications

Parallel scan:
Up-sweep : sum(all descendent leaves)
Down-sweep : sum(all preceding 1leaves)
“preceding” = left of all descendent leaves

sum[v] = sum[L[v]] + sum[R[v]]

(a) Executing a +-reduce on a tree.

Prefix sums and their applications

Parallel scan:

Up-sweep :
o

Down-sweep

PU

PU

20N

LU

RU

LY @ RY
PD
PD ® LU

Parent : sum of children
Left . copy parent
Right . parent + left-US

o
»\
LP RP
*

Prefix sums and their applications

“prescan.”
e Parallel scan:
rootP = I scan, = leaf® o a,
/
Up Sweep S
25 0
11 14 0 11
4 7 5 9 0 4 11 16
' \ / \ / / \ / \

3 1 7 0 4 1 6 3 0 3 4 11 11 15 16 22

um({v] = sum[L[v]] + sum[R[v]] prescan[L{v]] = prescan[v]
prescan[R[v]] = sum[L{v]] + prescan[v]

u —
leafi = a; (a) Executing a +-prescan on a tree.

Prefix sums and their applications

e Parallel scan:

procedure down-sweep(A)
aln—1] <0
for d from (lgn)—1 downto 0
in parallel for i from 0 to n—1 by 2¢+!
te—ali+22-1] % Save in temporary
ali +2¢ — 1) — afi + 24+ - 1] % Set left child
ali + 241 — 1) — t +afi + 29! — 1] % Set right child

Step Array in Memory

0 (3] o M 6 Bl
up 1 {3 7 4 6 &)

2 (3 4 7 4 5 6 [14])

3 (3 4 7 1 4 5 6 [25]
clear 4 [3 4 7 11 4 5 6 [01]
down 5 (3 4 7 [4 5 6 (1}

6 (3 O 7 [4 6 [(16]]

7 (@ B 4 (221)

(b) Executing a +-prescan on a P-RAM.

Figure 4: A parallel prescan on a tree using integer addition as the associative operator .

Prefix sums and their applications

e Scan = recurrence:

o X, = a, ®a, © ® a,

o x, = { a, i=20

o { x;, @ a, O <i<n

e Also parallelisable:

o Xi={b@ 1 =20

o { ax,, + b, @ <1i<n
e Proof sketch...

Prefix sums and their applications

e X, = ax,, +b,

o = a,(a, ,x,, +b.) + b, # Expand x, .

o = (aja, ,)x,, + (a,b, ; + b,) # Collect

e Define:

° Ci = [a;, b]

o c,ec, = [aiaj, aibj + b,] # e is associative
° # (proof in paper)
¢ Si1 = [A 0 Xx,4]

s A, = aA, |

e =>s,,0c =[aA ,, ax,, +b]

o = [Ai, Xi]

o = S, # “scan” recurrence

Martin, Eric, and Chris Cundy.
"Parallelizing linear recurrent
neural nets over sequence
length." arXiv preprint
arXiv:1709.04057 (2017).

Martin, 2017

Recognise connection RNN : parallel scan (!)
Classify parallelisable RNNs, EG QRNN [1]
Implement parallel scan CUDA kernel, 9x speed-ups
Linear recurrence:

Only linear within each layer

Stack multiple layers + nonlinearities

= Nonlinear dependence on past input tokens

[1] Bradbury, James, et al. "Quasi-recurrent neural
networks." arXiv preprint arXiv:1611.01576 (2016).

Martin, 2017

e Introduce GILR: linear recurrence + nonlinear gating

3.1 GATED IMPULSE LINEAR RECURRENT LAYER

A gated impulse linear recurrent (GILR) layer transforms its m dimensional inputs z; into a sequence
of n dimensional hidden states h;:

gt = o(Uzy + by)

it = T(Vxy + b,)

hi =g Ohi—1+(1—g:) Oy
A GILR layer applies the same non-linear transform to each sequence element and then accumulates
the sequence elements with a non-linear gating mechanism. Gate g; uses the sigmoid activation
function to give values in [0,1] for reasonable gating semantics, while impulse i; can use any activation

function 7. Stacking GILR layers allows for rich non-linear dependence on previous events while
still taking advantage of fast parallel sequence evaluation.

Martin, 2017

e Results >> LSTM (limited experiments)

Sequence Length' 1,024 Sequence Length 8,192

— GLRASTM 10

—— GLR-ASTM
— CuDNN

—— CuDNN

S 8 & 3B

Accuracy (Moving Average)

Accuracy (Moving Average)

2 % EJ ®

8
Wall Time / mins Wall Time / mins

Sequence Length: 1,048,576

Accuracy (Moving Average)

1000 1500 000
Figure 2: Learning curves for GILR-LSTM and CuDNN LSTM architectures for various sequence
lengths. Each plot shows the moving mean and standard deviation of classification accuracy over five
training runs, with the exception of a single run for CuUDNN LSTM on 1 million sequence length.

Feng, Leo, et al. "Were rnns all
we needed?.” arXiv preprint
arXiv:2410.01201 (2024).

Were rnns all we needed?

Derive simplified LSTM/GRU (“MinLSTM/MinGRU"):

(1) Fewer parameters

(2) Parallelisable training

(3) “surprisingly competitive performance” (abstract)
NB only MinLSTM vs MinGRU difference:

forget and input gates (MinLSTM)

single gate (MinGRU)

Were rnns all we needed?

h; = 0o; ® tanh(c;)
= o(Lineary, ([x¢, ht—1]))
=ftOci_1+14:0¢
; = o(Linearg, ([z¢, hi—1]))
iy = o(Linearg, ([, hi—1]))
¢; = tanh(Lineary, ([z¢, hi_1]))

minLSTM

h; :ftth—1+it®iLt
ft = o(Lineary, (x¢))
i; = o(Linearg, (x¢))

h; = Lineary, (x;)

Were rnns all we needed?

h: = (1—Zt)@ht—1+zt@’~lt
= o(Lineary, ([x¢, hi—1]))
o(Linearg, ([x¢, hi—1]))

tanh(Lineary, ([x¢, 7 © hi—1]))

hi=(1—2:) ©Oh_1 + 2 O hy
z; = o(Linearg, (2;))

h; = Lineary, (x;)

Were rnns all we needed?

e “Notably, minGRU is equivalent to GILR but without an
activation function” ... 1?

g — O'(UCCt + b) ~
, ¢ hi=1—-2)©hi_1+ 2 © hy
i = T(th + bZ) z; = o(Linearg, (x¢))
hy =gt ©hy_1 + (1 - gt) © 1 h; = Lineary, (x¢)
“GILR” Martin, Eric, and Chris Cundy. “minGRU” Feng, Leo, et al. "Were rnns all we
"Parallelizing linear recurrent neural nets needed?." arXiv preprint arXiv:2410.01201
over sequence length." arXiv preprint (2024).

arXiv:1709.04057 (2017).

Were rnns all we needed?

Linear recurrence/expressivity:
1st layer gates
f(current input)
= f(previous input)
1st layer output = f(previous input)
-> 2+ layer gates = f(previous input)

Model # Layers Accuracy

1 37.6+2.0 |
MinLSTM 2 857 £5.8
3 96.0 + 2.8
I 37.0+2.3
MinGRU 2 96.8 + 3.2
3 99.5+0.2

Table 1: Comparison of the number of
layers on the Selective Copying Task (Gu
& Dao, 2024).

Were rnns all we needed?

e Selective copy + RL results: reasonable

Model Layer Accuracy Dataset DT DS4 DAaren DMamba minLSTM minGRU
H3 Hyena 30.1 HalfCheetah-M 42.6 425 422 42.8 427+0.7 43.0+04
Mamba Hyena 284 Hopper-M 684 542 80.9 83.5 85.0+44 794+82
S4 S4 18.3 Walker-M 755 780 744 78.2 720+75 733+33
H3 S4 57.0 HalfCheetah-M-R 37.0 152 37.9 39.6 386+1.1 385+1.1
Mamba S4 56.4 Hopper-M-R 85.6 496 779 82.6 885+47 90.5+0.9
S4 S6 97.0 Walker-M-R 712 69.0 714 709 69.7+10.7 72.8+89
H3 S6 99.7 HalfCheetah-M-E 88.8 92.7 75.7 91.9 854+17 863%05
Mamba _S6 99.8 Hopper-M-E 109.6 110.8 103.9 111.1 1103+1.6 109.7+2.7
minGRU ~ minGRU = 99.5 0.2 Walker-M-E 109.3 1057 110.5 1083 1103205 110.3+0.4
minLSTM minLSTM 96.0+2.3 Average 764 686 750 78.8 78.1 782
Table 2: Selective Copy Task. minL- Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert
STM, minGRU, and Mamba’s S6 (Gu & normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds.
Dao, 2024) are capable of solving this task. The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David
Other methods such as S4, H3, and Hyena et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng

at best only partially solve the task. et al., 2024) and Decision Transformer (Chen et al., 2021).

Katharopoulos, Angelos, et al.
"Transformers are rnns: Fast
autoregressive transformers with
linear attention.” International
conference on machine learning.
PMLR, 2020.

Linear attention

e Self-attention = linear dot-product of kernel feature maps
(not softmax)

e Associativity: O(N?) -> O(N)

e “Our linear transformers achieve similar performance to
vanilla transformers and they are up to 4000x faster on
autoregressive prediction of very long sequences”

Linear attention

e Softmax attention:

Q = xWq,
K = ZCWK,
V= mWV,

T
Ai(z) = V' = softmax <Q\/KE) V.

Linear attention

e “Similarity” attention (generalisation):

2:?21Shn(gkafff)v9
Z;'Vzl sim (Q;, K;) |

Equation 3 1s equivalent to equation 2 if we substitute the

e 0 s : ; ; T
similarity function with sim (¢, k) = exp <qﬁ).

V=

1

3)

Linear attention

e “Kernel” attention (separable similarity):

Given such a kernel with a feature representation ¢ () we
can rewrite equation 2 as follows,

o ijld)(Qz) Qs(KJ)VJ

YL e@) oK)

and then further simplify it by making use of the associative
property of matrix multiplication to

$(Qi)" i, oK) VFE
$ Q)" L (K

4)

V! =

1

5)

Linear attention

Associlative,
e “Transformers are RNNs” recurrent ->
parallelisable
(parallel scan)
Accumulate
attention So = U, (16)
memory 20 =0, (17)
/i
rcoumulate $i = Si—1+ ¢ (x;Wk) (x;Wy)™, (18)
“normaliser’— 9 z; = 2;_1 + ¢ (x;Wk), (19)
memory T
0 (xZWQ) Si

Compute output / ¢ (%‘WQ)T Zi

Linear attention

e Results: speed = great, performance = reasonable (limited
comparisons)

TE
[]
102 4 /A
’%}\ 1 ’é\ 1()3 ;R A RSN B L
g = -
<) —
= 10} £
g 3 g 5 == linear(ours)
s 2 102 4 4
Y = E % . =& softmax
A ¥ eofsi Igh-
=) : Ish-1
- Ish-4
10° 4 :
E =@+ Ish-8
T T T T T T T T 1()1 B T T T 1 T T T T
29 210 211 912 213 914 215 216 29 210 211 212 213 214 215 216
Sequence Length Sequence Length

Figure 1: Comparison of the computational requirements for a forward/backward pass for Reformer (Ish-X), softmax
attention and linear attention. Linear and Reformer models scale linearly with the sequence length unlike softmax which
scales with the square of the sequence length both in memory and time. Full details of the experiment can be found in § 4.1.

Linear attention

Results: speed = great, performance = reasonable (limited

comparisons)

100 4 1 = linear (ours)
E 1 == goftmax
\

1071 5

1072

Cross Entropy Loss

1073

10~ 4

T T T 1
0 2000 4000 6000 8000 10000
Gradient steps

Figure 2: Convergence comparison of softmax, linear and
reformer attention on a sequence duplication task. linear
converges stably and reaches the same final performance as
softmax. The details of the experiment are in § 4.1.

Method Validation PER Time/epoch (s)
Bi-LSTM 10.94 1047
Softmax 5.12 2711
LSH-4 9.33 2250
Linear (ours) 8.08 824

Table 3: Performance comparison in automatic speech
recognition on the WSJ dataset. The results are given in
the form of phoneme error rate (PER) and training time per
epoch. Our model outperforms the LSTM and Reformer
while being faster to train and evaluate. Details of the exper-
iment can be found in § 4.3.

Linear attention

Results: speed = great, performance = reasonable (limited

comparisons)
Method Bits/dim Images/sec
Softmax 0.621 045 (1x)
LSH-1 0.745 0.68 (1.5%)
LSH-4 0.676 0.27 (0.6x)

Linear (ours) 0.644 1428 (317x%)

Table 1: Comparison of autoregressive image generation of
MNIST images. Our linear transformers achieve almost the
same bits/dim as the full softmax attention but more than
300 times higher throughput in image generation. The full
details of the experiment are in § 4.2.1.

Method Bits/dim Images/sec
Softmax 3.47 0.004 (1x)
LSH-1 3.39 0.015 (3.75%)
LSH-4 3.51 0.005 (1.25x)

Linear (ours) 3.40 1785 (4,462x%)

Table 2: We train autoregressive transformers for 1 week
on a single GPU to generate CIFAR-10 images. Our linear
transformer completes 3 times more epochs than softmax,
which results in better perplexity. Our model generates
images 4,000 x faster than the baselines. The full details of
the experiment are in § 4.2.2.

Gu, Albert, et al. "Combining
recurrent, convolutional, and
continuous-time models with
linear state space layers.”
Advances in neural information
processing systems 34 (2021):
572-585.

Linear state space layers

Stacked layers of linear state space models
Position-wise nonlinearities between layers
Well established theory

EG (input : output) ~ convolution (impulse response)

Our first goal is to construct an expressive model family that combines all 3 paradigms while
preserving their strengths. The Linear State-Space Layer (LSSL) is a simple sequence model that
maps a 1-dimensional function or sequence u(t) + y(t) through an implicit state (¢) by simulating
a linear continuous-time state-space representation in discrete-time

#(t) = Ax(t) + Bu(t) (1)
y(t) = Cz(t) + Du(t),)]

where A controls the evolution of the system and B, C, D are projection parameters. The LSSL can
be viewed as an instantiation of each family, inheriting their strengths (Fig. 1):

» LSSLs are recurrent. If a discrete step-size At is specified, the LSSL can be discretized
into a linear recurrence using standard techniques, and simulated during inference as a
stateful recurrent model with constant memory and computation per time step.

* LSSLs are convolutional. The linear time-invariant systems defined by (1)+(2) are known
to be explicitly representable as a continuous convolution. Moreover, the discrete-time
version can be parallelized during training using convolutions [12, 44].

» LSSLs are continuous-time. The LSSL itself is a differential equation. As such, it can

perform unique applications of continuous-time models, such as simulating continuous
processes, handling missing data [45], and adapting to different timescales.

Linear state space layers

Stacked layers of linear state space models
Generalises RNNs + CNNs
Preserve information in LRDs (“continuous time
memorization”)

Summary of Contributions

* We introduce Linear State-Space Layers (LSSLs), a simple sequence-to-sequence transformation
that shares the modeling advantages of recurrent, convolutional, and continuous-time methods.
Conversely, we show that RNNs and CNNs can be seen as special cases of LSSLs (Section 3).

* We prove that a structured subclass of LSSLs can learn representations that solve continuous-time
memorization, allowing it to adapt its measure and timescale (Section 4.1). We also provide new
algorithms for these LSSLs, showing that they can be sped up computationally under an arithmetic
complexity model Section 4.2.

* Empirically, we show that LSSLs stacked into a deep neural network are widely effective on time
series data, even (or especially) on extremely long sequences (Section 5).

Linear state space layers

Yt

Discrete approximation for continuous linear SSM
Recurrence or convolution (can parallelise with FFT)

Zﬂjt_l + Fut
CiBt + Dut.

As a recurrence. The recurrent state z;_; € R %V carries the context of all inputs before time ¢.
The current state x; and output y; can be computed by simply following equations (4)+(5). Thus the
LSSL is a recurrent model with efficient and stateful inference, which can consume a (potentially
unbounded) sequence of inputs while requiring fixed computation/storage per time step.

As a convolution. For simplicity let the initial state be x_; = 0. Then (4)+(5) explicitly yields
yr = C (A)" Buo + C (A)" "' Buy + - - - + CABuy_1 + Buy, + Duy. 6)
Then y is simply the (non-circular) convolution y = K1 (A4, B, C) * u + Du, where

Kr(A,B,C) = (CA"B)iE[L] eRE = (CB,CAB,...,CA* 1B). (7)

Thus the LSSL can be viewed as a convolutional model where the entire output y € R¥*L can be
computed at once by a convolution, which can be efficiently implemented with three FFTs.

Linear state space layers

e HIPPO theory: choose 'A° (closed form) to provably
memorise LRD

The translated Legendre (E€gT) measures assign uniform weight to the most recent history [t —0.,¢].
There is a hyperparameter representlng the length of the sliding window, or the length of history

that is being summarized. The translated Laguerre (LagT) measures instead use the exponentially
decaying measure, assigning more importance to recent history.

1 g et ifg<t
Legl:) (z) =5l —p(2) Lagl:u®(z)=e)H<—oo,t](‘”):{0 if o>t

Theorem 1. For LegT and LagT, the hippo operators satisfying Definition 1 are given by linear
time-invariant (LTI) ODEs L c(t)=—Ac(t)+ B f(t), where AcRN*N B e RN*1:
LegT: L .
_1\n—k . agT:
Anfl{(D @ntl) inzk g Lontiy-1y dppesa SRR
0 |2n+1 ifn<k 0 o k=190 O

Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial projections." Advances
in neural information processing systems 33 (2020): 1474-1487.

Linear state space layers

Strong results (selected problems)
s/p = sequential/permuted

Limitation: space complexity

Table 1: (Pixel-by-pixel image classification.)
(Top) our methods. (Middle) recurrent baselines.
(Bottom) convolutional + other baselines.

Model SMNIST pMNIST sCIFAR
LSSL 99.53 98.76 84.65
LSSL-fixed 99.50 98.60 81.97
LipschitzZRNN 99.4 96.3 64.2
LMUFFT [12] - 98.49 .
UNIcoRNN [47] - 98.4 -
HiPPO-RNN [24] 98.9 98.3 61.1
URGRU [25] 99.27 96.51 744
IndRNN [34] 99.0 96.0

Dilated RNN [8] 98.0 96.1 -
r-LSTM [56] 98.4 95.2 72.2
CKConv [44] 99.32 98.54 63.74
TrellisNet [4] 99.20 98.13 73.42
TCN [3] 99.0 97.2 -
Transformer [56] 98.9 979 62.2

Table 2: (Vital signs prediction.) RMSE for pre-
dicting respiratory rate (RR), heart rate (HR), and
blood oxygen (SpO2). * indicates our own runs to
complete results for the strongest baselines.

Model RR HR SpO2
LSSL 0.350 0.432 0.141
LSSL-fixed 0.378 0.561 0.221
UnICORNN [47] 1.06 1:39 0.869%*
coRNN [47] 1.45 1.81 -
CKConv 1.214*% 2.05% 1.051%
NRDE [37] 1.49 297 1.29
IndRNN [47] 1.47 2.1 -
expRNN [47] 1.57 1.87 -
LSTM 2.28 10.7 -
Transformer 2:61* 12.2* 3.02*
XGBoost [55] 1.67 4.72 1.52
Random Forest [55] 1.85 5.69 1.74
Ridge Regress. [55] 3.86 17:3 4.16

Gu, Albert, Karan Goel, and
Christopher Ré. "Efficiently
modeling long sequences with

structured state spaces.” arXiv
preprint arXiv:2111.00396 (2021).

)
N

LSSL: high space complexity
S4: efficient reparameterisation of SSM
Condition A" with low-rank correction
-> Stable diagonalisation
Strong results:
“SoTA on every task from the Long Range Arena”
“as efficient as all competitors”
“closing the gap to Transformers... performing
generation 60x faster”

S4

Parameterise "A° as NPLR
Normal: commutes with transpose
EG orthogonal, symmetric
-> Efficient computation using Woodbury identity

Our techniques apply to any matrix that can be decomposed as Normal Plus Low-Rank (NPLR).
Theorem 1. All HiPPO matrices from_[16] have a NPLR representation
A=VAV*—PQ" =V (A—(V*P)(V*Q)")V* (6)

for unitary V€ CN*N | diagonal A, and low-rank factorization P,Q € RN*". These matrices HiPPO- LegS,
LegT, LagT all satisfy r =1 or r = 2. In particular, equation (2) is NPLR with r = 1.

S4

e Results:

Table 4: (Long Range Arena) (Top) Original Transformer variants in LRA. Full results in Appendix D.2. (Bottom)
Other models reported in the literature. Please read Appendiz D.5 before citing this table.

MODEL ListOps TeEXT RETRIEVAL IMAGE PATHFINDER PATH-X AvG
Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66
Reformer 3727 56.10 53.40 38.07 68.50 X 50.56
BigBird 36.05 64.02 59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 X 50.46
Performer 18.01 65.40 53.82 42.77 77.05 X 51.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nystromformer 37.15 65.52 79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57 79.29 47.38 TL-02 X 59.37
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09

S4

Results:

' Table 8: (WikiText-103 language modeling) S4 ap-
: proaches the performance of Transformers with much
faster generation. (7op) Transformer baseline which our

implementation is based on, with attention replaced by
S4. (Bottom) Attention-free models (RNNs and CNNs).

Model Params Test ppl. Tokens / sec
Transformer 247M 20.51 0.8K (1x)
GLU CNN 229M 37.2 -
AWD-QRNN 151M 33.0 -

LSTM + Hebb. - 29.2 -

TrellisNet 180M 29.19 -

Dynamic Conv. 255M 25.0 -

TaLK Conv. 240M 23.3 -

S4 249M 20.95 48K (60X)

S4

e HIPPO initialisation = important

Unstructured SSM Unstructured SSM
10— e ——————————————————————————— | A ARl Y= — s ===t

o
@

Train Accuracy
o
o
Val Accuracy
o
w

g ”\“,‘J\v\,"l,’\r—J\,f~—\I\—"'\‘~“I*""“:“*—\”J ------- sm NN

— HiPPO 0.4 s AN — HiPPO
0.4 —— Diagonal -~ —— Diagonal
—— Random 0.3 —— Random
—— Trained A —— Trained A
0.2 -=-=- Frozen A 02 === Frozen A
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Epoch Epoch

Figure 3: CIFAR-10 classification with unconstrained, real-valued SSMs with various initializations. (Left) Train
accuracy. (Right) Validation accuracy.

Smith, Jimmy TH, Andrew
Warrington, and Scott W.
Linderman. "Simplified state
space layers for sequence
modeling." arXiv preprint
arXiv:22608.04933 (2022).

S5

e Smith, Jimmy TH, Andrew Warrington, and Scott W.
Linderman. "Simplified state space layers for sequence
modeling." arXiv preprint arXiv:2208.04933 (2022).

o Replace many independent SISO SSMs (S4) with one MIMO SSM

o Train with parallel scan
o “match the computational efficiency of S4, while also achieving

state-of-the-art performance on several long-range sequence modeling
tasks”

Gu, Albert, and Tri Dao. "Mamba:
Linear-time sequence modeling
with selective state spaces.”

arXiv preprint arXiv:2312.00752

(2023).

MAMBA

Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence
modeling with selective state spaces." arXiv preprint
arXiv:2312.00752 (2023).

SSM params = f(input)

Train with parallel scan + CUDA kernel fusion

No attention/MLP blocks

“On language modeling, our Mamba-3B model outperforms
Transformers of the same size and matches Transformers
twice its size”

Dao, Tri, and Albert Gu.
"Transformers are SSMs:
Generalized models and efficient
algorithms through structured

state space duality.” arXiv
preprint arXiv:2405.21060 (2024).

Orvieto, Antonio, et al.
"Resurrecting recurrent neural
networks for long sequences.’

International Conference on
Machine Learning. PMLR, 20623.

Lu, Chris, et al. "Structured
state space models for in-context
reinforcement learning.” Advances
in Neural Information Processing

Systems 36 (2024).

