
Parallelisable
Recurrent
Sequence
Models

2025-02-06
OccaMLab X OatML Joint Group Seminar

Font = Roboto Mono (normal), title colour = `283618`, comment colour = `6aa84f`
(“dark green 1”)

Outline

1. Definitions
2. Papers:

a. [parallel scan] Blelloch, Guy E. "Prefix sums and their applications." (1990).
b. Martin, Eric, and Chris Cundy. "Parallelizing linear recurrent neural nets over sequence length."

arXiv preprint arXiv:1709.04057 (2017).
c. Feng, Leo, et al. "Were rnns all we needed?." arXiv preprint arXiv:2410.01201 (2024).
d. [linear attention] Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive

transformers with linear attention." International conference on machine learning. PMLR, 2020.
e. [LSSL] Gu, Albert, et al. "Combining recurrent, convolutional, and continuous-time models with

linear state space layers." Advances in neural information processing systems 34 (2021): 572-585.
f. [S4] Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with

structured state spaces." arXiv preprint arXiv:2111.00396 (2021).
g. [S5] Smith, Jimmy TH, Andrew Warrington, and Scott W. Linderman. "Simplified state space layers for

sequence modeling." arXiv preprint arXiv:2208.04933 (2022).
h. [Mamba] Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence modeling with selective state

spaces." arXiv preprint arXiv:2312.00752 (2023).
i. [Mamba 2] Dao, Tri, and Albert Gu. "Transformers are SSMs: Generalized models and efficient

algorithms through structured state space duality." arXiv preprint arXiv:2405.21060 (2024).
j. Orvieto, Antonio, et al. "Resurrecting recurrent neural networks for long sequences." International

Conference on Machine Learning. PMLR, 2023.
k. Lu, Chris, et al. "Structured state space models for in-context reinforcement learning." Advances

in Neural Information Processing Systems 36 (2024).

Green: stimulus for talk. Found, read, thought cool. Here I am giving seminar. Lots of
papers -> interrupt, discuss. Don’t need to cover everything

Definitions

1. Associativity
2. Sequence model
3. Recurrent sequence model
4. Parallelisable sequence model

Associativity = recurring theme. 2 properties of sequence models + motivation. Rattle
through !!!

Associativity

● S = {s1, s2, ...}
● Binary operation:
● f: S × S -> S
● f(x, y) = x
● x ∘ y = z

We have a set. Binary operation takes 2 elements, produces 3rd. Dot notation

Associativity

● Associative binary operation (∀ x,y,z):
● (x ∘ y) ∘ z
● = x ∘ (y ∘ z)
● = x ∘ y ∘ z
● -> “Generalized associative law”, EG:
● ((((u ∘ v) ∘ w) ∘ x) ∘ y) ∘ z
● = u ∘ (v ∘ (w ∘ (x ∘ (y ∘ z))))
● = u ∘ v ∘ w ∘ x ∘ y ∘ z
● Result ⟂ order of brackets
● Compute in any order [in time]

We have expression: x dot y dot z. Associative: change order of brackets, always
same result. ~ don’t write brackets. Generalises to longer expressions (proof:
induction). General concept: result independent of order of brackets/computation.
Compute products in any order (without changing sequence order)

Associativity

● Examples:
● x + y
● x * y
● "hello " + "world"
● = "hello world"
● Counterexamples:
● x - y
● x / y
● 2(x + y)

(x ∘ y) ∘ z
= 2(2x + 2y) + 2z
= 4x + 4y + 2z

x ∘ (y ∘ z)
= 2x + 2(2y + 2z)
= 2x + 4y + 4z

Addition, multiplication, concatenation (no inverse). Subtraction, division,
addition+multiplication (!). Terms “remember” depth (# enclosing brackets)

Sequence model

● f:
● ordered, variable-length input x1:T
● learnable parameters w
● x = text, video, POMDP (RL) states, ...

yt = f(x1, x2, ..., xt; w)

Function: input = ordered variable-length sequence, parameters = learnable.
Examples

Recurrent sequence model

● Input -> hidden state -> output
● ht = f(xt, ht-1)
● yt = g(ht)
● EG RNN (<1997), LSTM (1997), GRU (2014)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Common theme = hidden state. Update hidden (current input + previous hidden),
discard current input (don’t store in memory). Output from hidden.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent sequence model

● Input -> hidden state -> output
● Length N sequence:
● Inference : O(1) space 🙂
● Training : O(N) space 🫤 (BPTT)
● Sequential -> hard to parallelise 🙁

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inference = memory efficient (discard inputs, don’t have to store in memory). Training:
less memory efficient (compute gradients: backpropagate through computational
graph -> store computational graph in memory). Not a problem for humans.
Sequential computation = hard to parallelise -> Slow to train

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

● ⟂ hidden states -> compute in parallel
● Fast training on GPUs* 🙂
● *When data is pre-generated (not in RL 🫤)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

No dependencies between hidden states, compute in parallel. Fast training on GPUs,
EG for language modelling but not for RL

● Transformers (2017):
● qt, kt, vt = fqkv(xt)
● wt = fw(qt, k1:T)
● at = fa(wt, v1:T)
● yt = fy(xt, at)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Query, key, value
Attention weights
Attention
Output

For each input token: (1) QKV from input (2) attention weight for each query using all
keys (3) attention using weights and all values (4) output token from attention and
input (residual, PW-MLP, layer norm etc)

● Transformers (2017):
● ai ⟂ aj -> parallelise
● fw, fa -> long range dependencies (LRD)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Attention tokens in a layer = mutually independent -> compute in parallel. Long-range
input/output token pairs computed directly (not squashed through many recurrent
updates) -> model LRD between distant tokens. Attention (2014): motivation = LRD.
Transformer: motivation = attention + parallel

Paralleli
sableRecurrent

Fast
training

Efficient
inference

Summarise: recurrent SMs -> efficient inference, parallelisable SMs -> fast training

Paralleli
sableRecurrent

MinLSTM,MinGRU
Linear Attention
LSSL,S4,S5,Mamba

Transformers
(in general)RNN,LSTM,GRU

Focus of talk = intersection

Blelloch, Guy E. "Prefix sums and
their applications." (1990).

On to papers. Old paper but …

Blelloch, Guy E. "Prefix sums and
their applications." (1990).

Feng, Leo, et al. "Were rnns all we
needed?." arXiv preprint
arXiv:2410.01201 (2024).

Smith, Jimmy TH, Andrew Warrington, and
Scott W. Linderman. "Simplified state
space layers for sequence modeling."
arXiv preprint arXiv:2208.04933 (2022).

Gu, Albert, and Tri Dao. "Mamba:
Linear-time sequence modeling with
selective state spaces." arXiv preprint
arXiv:2312.00752 (2023).

… Precursor of many recent papers. Worthwhile to discuss

Prefix sums and their applications

● ⊕ : associative binary operator
● I⊕ : identity of ⊕, IE (∀a) a ⊕ I = a
● [a0, a1, ..., an-1]⊕ : input sequence

To start off with: assume we have associative binary operator (“plus in circle”/”plus”),
identity of the operator (“I”), length-n input sequence (“a”)

Prefix sums and their applications

● `reduce`:
● apply ⊕ to full sequence
● reduce(a) = a0 ⊕ a1 ⊕ ... ⊕ an-1

Define reduce: apply binary operator to full sequence

Prefix sums and their applications

● `scan`:
● scan(a) = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
● scan(a)i = reduce([a0, ..., ai)
● scan(a)n-1 = reduce(a)
● CF numerical integration, `numpy.cumsum` etc

scan

15

Define scan: ith element of scan = reduce of first i elements of input sequence (first i
elements = prefix -> prefix sums). Last element of scan is full reduce. Example

Prefix sums and their applications

● `scan`:
● scan(a) = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
● scan(a)i = reduce([a0, ..., ai)
● scan(a)n-1 = reduce(a)
● CF numerical integration, `numpy.cumsum` etc
● Parallel `scan` = focus of paper

“... a good example of a computation that seems inherently sequential,
but for which there is an efficient parallel algorithm.”

Paper = about parallel scan. Interesting because looks sequential: each element can
be computed from previous element

Prefix sums and their applications

● Parallel reduce: “up-sweep”

Precursor to parallel scan = parallel reduce. Because operator = associative ->
compute operations in any order. Parallel hardware -> most efficient = tree.
Computation from leaves to root -> “up-sweep”

Prefix sums and their applications

● Parallel reduce: “up-sweep”
● Up-sweep -> (partial) scan results:

3 = scan(a)0

4 = scan(a)1

11 = scan(a)3

25 = scan(a)7

Computation tree contains partial sums. Partial sums: (partial) scan results. Question:
how to use these to compute scan?

Prefix sums and their applications

● Parallel scan:
● Up-sweep : sum(all descendent leaves)
● Down-sweep : sum(all preceding leaves)
● “preceding” = left of all descendent leaves

Parallel scan intuition: up sweep + down sweep, node values = sums

Prefix sums and their applications

● Parallel scan:
● Up-sweep : PU = LU ⊕ RU # Parent : sum of children
● Down-sweep : LD = PD ⊕ # Left : copy parent
● RD = PD ⊕ LU # Right : parent + left-US

LU RU

PU

LD RD

PD

Consider 3 nodes: L (left child), R (right child), P (parent). Assume PD already has
sum of all preceding leaves. Preceding leaves of L = preceding leaves of P. So LD =
PD. Preceding leaves of R = preceding leaves of P + descendent leaves of L. Sum
of descendent leaves of L = LU (from up-sweep). So RD = PD + LU. Preceding leaves
of root = empty set, so initialise root = identity on down-sweep. Solid arrows: sum.
Dashed arrow: copy

Prefix sums and their applications

● Parallel scan:

leafi
U = ai

rootD = I scani = leafi
D ⊕ ai

“prescani”

Up sweep: initialise leaves to input sequence. Down sweep: initialise root node to
identity. Scan(a) = down-sweep leaf values + input sequence (leaf values =
“prescan”). Proof in paper

Prefix sums and their applications

● Parallel scan:

Demonstrate implementation with not much additional memory

Prefix sums and their applications

● Scan = recurrence:
● xi = a0 ⊕ a1 ⊕ ... ⊕ ai
● xi = { a0 ⊕ i = 0
● { xi-1 ⊕ ai 0 < i < n
● Also parallelisable:
● xi = { b0 i = 0
● { aixi-1 + bi 0 < i < n
● Proof sketch...

Last thing to say about parallel scan = expresses recurrence. Can compute any
linear recurrence as parallel scan

Prefix sums and their applications

● xi = aixi-1 + bi
● = ai(ai-1xi-2 + bi-1) + bi # Expand xi-1
● = (aiai-1)xi-2 + (aibi-1 + bi) # Collect
● Define:
● ci = [ai, bi]
● cj ● ci = [aiaj, aibj + bi] # ● is associative
● # (proof in paper)
● si-1 = [Ai-1, xi-1]
● Ai = aiAi-1
● => si-1 ● ci = [aiAi-1, aixi-1 + bi]
● = [Ai, xi]
● = si # “scan” recurrence

Proof sketch: introduce new associative operator on 2D vectors, derive “scan”
recurrence that contains original recurrence in one of the dimensions. NB coefficients
can be different on every time step (EG function of input data)

Martin, Eric, and Chris Cundy.
"Parallelizing linear recurrent

neural nets over sequence
length." arXiv preprint
arXiv:1709.04057 (2017).

Martin, 2017

● Recognise connection RNN : parallel scan (!)
● Classify parallelisable RNNs, EG QRNN [1]
● Implement parallel scan CUDA kernel, 9x speed-ups
● Linear recurrence:
● Only linear within each layer
● Stack multiple layers + nonlinearities
● ⇒ Nonlinear dependence on past input tokens

[1] Bradbury, James, et al. "Quasi-recurrent neural
networks." arXiv preprint arXiv:1611.01576 (2016).

Martin, 2017

● Introduce GILR: linear recurrence + nonlinear gating

Martin, 2017

● Results >> LSTM (limited experiments)

Feng, Leo, et al. "Were rnns all
we needed?." arXiv preprint
arXiv:2410.01201 (2024).

Were rnns all we needed?

● Derive simplified LSTM/GRU (“MinLSTM/MinGRU”):
● (1) Fewer parameters
● (2) Parallelisable training
● (3) “surprisingly competitive performance” (abstract)
● NB only MinLSTM vs MinGRU difference:
● forget and input gates (MinLSTM)
● single gate (MinGRU)

Were rnns all we needed?

Were rnns all we needed?

You might think MinGRU looks familiar…

Were rnns all we needed?

● “Notably, minGRU is equivalent to GILR but without an
activation function” ... !?

“GILR” Martin, Eric, and Chris Cundy.
"Parallelizing linear recurrent neural nets
over sequence length." arXiv preprint
arXiv:1709.04057 (2017).

“minGRU” Feng, Leo, et al. "Were rnns all we
needed?." arXiv preprint arXiv:2410.01201
(2024).

MinGRU = rip off of GILR in 2017

Were rnns all we needed?

● Linear recurrence/expressivity:
● 1st layer gates
● = f(current input)
● ≠ f(previous input)
● 1st layer output = f(previous input)
● -> 2+ layer gates = f(previous input)

First layer gates have limited expressivity. Deeper layer gates are more expressive.
Reflected in results

Were rnns all we needed?

● Selective copy + RL results: reasonable

Katharopoulos, Angelos, et al.
"Transformers are rnns: Fast

autoregressive transformers with
linear attention." International
conference on machine learning.

PMLR, 2020.

Linear attention

● Self-attention = linear dot-product of kernel feature maps
(not softmax)

● Associativity: O(N2) -> O(N)
● “Our linear transformers achieve similar performance to

vanilla transformers and they are up to 4000x faster on
autoregressive prediction of very long sequences”

Linear attention

● Softmax attention:

Linear attention

● “Similarity” attention (generalisation):

Linear attention

● “Kernel” attention (separable similarity):

Linear attention

● “Transformers are RNNs”

Accumulate
attention
memory

Accumulate
“normaliser”
memory

Compute output

Associative,
recurrent ->
parallelisable
(parallel scan)

Linear attention

● Results: speed = great, performance = reasonable (limited
comparisons)

Linear attention

● Results: speed = great, performance = reasonable (limited
comparisons)

Linear attention

● Results: speed = great, performance = reasonable (limited
comparisons)

Gu, Albert, et al. "Combining
recurrent, convolutional, and
continuous-time models with
linear state space layers."

Advances in neural information
processing systems 34 (2021):

572-585.

Linear state space layers

● Stacked layers of linear state space models
● Position-wise nonlinearities between layers
● Well established theory
● EG (input : output) ~ convolution (impulse response)

SSMs have much established theory, including “impulse response”

Linear state space layers

● Stacked layers of linear state space models
● Generalises RNNs + CNNs
● Preserve information in LRDs (“continuous time

memorization”)

Linear state space layers

● Discrete approximation for continuous linear SSM
● Recurrence or convolution (can parallelise with FFT)

Connection of FFT vs DFT to parallel scan?

Linear state space layers

● HIPPO theory: choose `A` (closed form) to provably
memorise LRD

Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial projections." Advances
in neural information processing systems 33 (2020): 1474-1487.

Connection of FFT vs DFT to parallel scan?

Linear state space layers

● Strong results (selected problems)
● s/p = sequential/permuted
● Limitation: space complexity

Connection of FFT vs DFT to parallel scan?

Gu, Albert, Karan Goel, and
Christopher Ré. "Efficiently
modeling long sequences with

structured state spaces." arXiv
preprint arXiv:2111.00396 (2021).

S4

● LSSL: high space complexity
● S4: efficient reparameterisation of SSM
● Condition `A` with low-rank correction
● -> Stable diagonalisation
● Strong results:
● “SoTA on every task from the Long Range Arena”
● “as efficient as all competitors”
● “closing the gap to Transformers... performing

generation 60× faster”

S4

● Parameterise `A` as NPLR
● Normal: commutes with transpose
● EG orthogonal, symmetric
● -> Efficient computation using Woodbury identity

S4

● Results:

S4

● Results:

S4

● HIPPO initialisation = important

Smith, Jimmy TH, Andrew
Warrington, and Scott W.

Linderman. "Simplified state
space layers for sequence
modeling." arXiv preprint
arXiv:2208.04933 (2022).

S5

● Smith, Jimmy TH, Andrew Warrington, and Scott W.
Linderman. "Simplified state space layers for sequence
modeling." arXiv preprint arXiv:2208.04933 (2022).

○ Replace many independent SISO SSMs (S4) with one MIMO SSM
○ Train with parallel scan
○ “match the computational efficiency of S4, while also achieving

state-of-the-art performance on several long-range sequence modeling
tasks”

Gu, Albert, and Tri Dao. "Mamba:
Linear-time sequence modeling
with selective state spaces."
arXiv preprint arXiv:2312.00752

(2023).

MAMBA

● Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence
modeling with selective state spaces." arXiv preprint
arXiv:2312.00752 (2023).

● SSM params = f(input)
● Train with parallel scan + CUDA kernel fusion
● No attention/MLP blocks
● “On language modeling, our Mamba-3B model outperforms

Transformers of the same size and matches Transformers
twice its size”

Dao, Tri, and Albert Gu.
"Transformers are SSMs:

Generalized models and efficient
algorithms through structured
state space duality." arXiv

preprint arXiv:2405.21060 (2024).

Orvieto, Antonio, et al.
"Resurrecting recurrent neural
networks for long sequences."
International Conference on
Machine Learning. PMLR, 2023.

Lu, Chris, et al. "Structured
state space models for in-context
reinforcement learning." Advances
in Neural Information Processing

Systems 36 (2024).

