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Green: stimulus for talk. Found, read, thought cool. Here I am giving seminar. Lots of 
papers -> interrupt, discuss. Don’t need to cover everything



Definitions

1. Associativity
2. Sequence model
3. Recurrent sequence model
4. Parallelisable sequence model

Associativity = recurring theme. 2 properties of sequence models + motivation. Rattle 
through !!!



Associativity

● S = {s1, s2, ...}
● Binary operation:
●     f: S × S -> S
●     f(x, y) = x
●     x ∘ y = z

We have a set. Binary operation takes 2 elements, produces 3rd. Dot notation



Associativity

● Associative binary operation (∀ x,y,z):
●     (x ∘ y) ∘ z
●     = x ∘ (y ∘ z)
●     = x ∘ y ∘ z
● -> “Generalized associative law”, EG:
●     ((((u ∘ v) ∘ w) ∘ x) ∘ y) ∘ z
●     = u ∘ (v ∘ (w ∘ (x ∘ (y ∘ z))))
●     = u ∘ v ∘ w ∘ x ∘ y ∘ z
● Result ⟂ order of brackets
● Compute in any order [in time]

We have expression: x dot y dot z. Associative: change order of brackets, always 
same result. ~ don’t write brackets. Generalises to longer expressions (proof: 
induction). General concept: result independent of order of brackets/computation. 
Compute products in any order (without changing sequence order)



Associativity

● Examples:
●     x + y
●     x * y
●     "hello " + "world"
●     = "hello world"
● Counterexamples:
●     x - y
●     x / y
●     2(x + y)

(x ∘ y) ∘ z
= 2(2x + 2y) + 2z
= 4x + 4y + 2z

x ∘ (y ∘ z)
= 2x + 2(2y + 2z)
= 2x + 4y + 4z

Addition, multiplication, concatenation (no inverse). Subtraction, division, 
addition+multiplication (!). Terms “remember” depth (# enclosing brackets)



Sequence model

● f:
●     ordered, variable-length input x1:T
●     learnable parameters w
● x = text, video, POMDP (RL) states, ...

yt = f(x1, x2, ..., xt; w)

Function: input = ordered variable-length sequence, parameters = learnable. 
Examples



Recurrent sequence model

● Input -> hidden state -> output
●     ht = f(xt, ht-1)
●     yt = g(ht)
● EG RNN (<1997), LSTM (1997), GRU (2014)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Common theme = hidden state. Update hidden (current input + previous hidden), 
discard current input (don’t store in memory). Output from hidden.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent sequence model

● Input -> hidden state -> output
● Length N sequence:
●     Inference : O(1) space 🙂
●     Training  : O(N) space 🫤 (BPTT)
● Sequential -> hard to parallelise 🙁

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Inference = memory efficient (discard inputs, don’t have to store in memory). Training: 
less memory efficient (compute gradients: backpropagate through computational 
graph -> store computational graph in memory). Not a problem for humans. 
Sequential computation = hard to parallelise -> Slow to train

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


● ⟂ hidden states -> compute in parallel
● Fast training on GPUs* 🙂
● *When data is pre-generated (not in RL 🫤)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

No dependencies between hidden states, compute in parallel. Fast training on GPUs, 
EG for language modelling but not for RL



● Transformers (2017):
●     qt, kt, vt = fqkv(xt)
●     wt = fw(qt, k1:T)
●     at = fa(wt, v1:T)
●     yt = fy(xt, at)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

# Query, key, value
# Attention weights
# Attention
# Output

For each input token: (1) QKV from input (2) attention weight for each query using all 
keys (3) attention using weights and all values (4) output token from attention and 
input (residual, PW-MLP, layer norm etc)



● Transformers (2017):
●     ai ⟂ aj -> parallelise
●     fw, fa  -> long range dependencies (LRD)

Parallelisable sequence model

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Attention tokens in a layer = mutually independent -> compute in parallel. Long-range 
input/output token pairs computed directly (not squashed through many recurrent 
updates) -> model LRD between distant tokens. Attention (2014): motivation = LRD. 
Transformer: motivation = attention + parallel



Paralleli
sableRecurrent

Fast
training

Efficient
inference

Summarise: recurrent SMs -> efficient inference, parallelisable SMs -> fast training



Paralleli
sableRecurrent

MinLSTM,MinGRU
Linear Attention
LSSL,S4,S5,Mamba

Transformers
(in general)RNN,LSTM,GRU

Focus of talk = intersection



Blelloch, Guy E. "Prefix sums and 
their applications." (1990).

On to papers. Old paper but …



Blelloch, Guy E. "Prefix sums and 
their applications." (1990).

Feng, Leo, et al. "Were rnns all we 
needed?." arXiv preprint 
arXiv:2410.01201 (2024).

Smith, Jimmy TH, Andrew Warrington, and 
Scott W. Linderman. "Simplified state 
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… Precursor of many recent papers. Worthwhile to discuss



Prefix sums and their applications

● ⊕                  : associative binary operator
● I⊕                 : identity of ⊕, IE (∀a) a ⊕ I = a
● [a0, a1, ..., an-1]⊕ : input sequence

To start off with: assume we have associative binary operator (“plus in circle”/”plus”), 
identity of the operator (“I”), length-n input sequence (“a”)



Prefix sums and their applications

● `reduce`:
●     apply ⊕ to full sequence
●     reduce(a) = a0 ⊕ a1 ⊕ ... ⊕ an-1

Define reduce: apply binary operator to full sequence



Prefix sums and their applications

● `scan`:
●     scan(a)    = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
●     scan(a)i   = reduce([a0, ..., ai)
●     scan(a)n-1 = reduce(a)
●     CF numerical integration, `numpy.cumsum` etc

scan

15

Define scan: ith element of scan = reduce of first i elements of input sequence (first i 
elements = prefix -> prefix sums). Last element of scan is full reduce. Example



Prefix sums and their applications

● `scan`:
●     scan(a)    = [a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an-1)]
●     scan(a)i   = reduce([a0, ..., ai)
●     scan(a)n-1 = reduce(a)
●     CF numerical integration, `numpy.cumsum` etc
●     Parallel `scan` = focus of paper

“... a good example of a computation that seems inherently sequential,
but for which there is an efficient parallel algorithm.”

Paper = about parallel scan. Interesting because looks sequential: each element can 
be computed from previous element



Prefix sums and their applications

● Parallel reduce: “up-sweep”

Precursor to parallel scan = parallel reduce. Because operator = associative -> 
compute operations in any order. Parallel hardware -> most efficient = tree. 
Computation from leaves to root -> “up-sweep”



Prefix sums and their applications

● Parallel reduce: “up-sweep”
● Up-sweep -> (partial) scan results:

3 = scan(a)0

4 = scan(a)1

11 = scan(a)3

25 = scan(a)7

Computation tree contains partial sums. Partial sums: (partial) scan results. Question: 
how to use these to compute scan?



Prefix sums and their applications

● Parallel scan:
●       Up-sweep : sum(all descendent leaves)
●     Down-sweep : sum(all preceding  leaves)
●     “preceding” = left of all descendent leaves

  

Parallel scan intuition: up sweep + down sweep, node values = sums



Prefix sums and their applications

● Parallel scan:
●       Up-sweep : PU = LU ⊕ RU  # Parent : sum of children
●     Down-sweep : LD = PD ⊕     # Left   : copy parent
●                  RD = PD ⊕ LU  # Right  : parent + left-US

LU RU

PU

LD RD

PD

Consider 3 nodes: L (left child), R (right child), P (parent). Assume PD already has 
sum of all preceding leaves. Preceding leaves of L = preceding leaves of P. So LD = 
PD. Preceding leaves of R = preceding leaves of P + descendent leaves of L. Sum 
of descendent leaves of L = LU (from up-sweep). So RD = PD + LU. Preceding leaves 
of root = empty set, so initialise root = identity on down-sweep. Solid arrows: sum. 
Dashed arrow: copy



Prefix sums and their applications

● Parallel scan:

leafi
U = ai

rootD = I scani = leafi
D ⊕ ai

“prescani”

Up sweep: initialise leaves to input sequence. Down sweep: initialise root node to 
identity. Scan(a) = down-sweep leaf values + input sequence (leaf values = 
“prescan”). Proof in paper



Prefix sums and their applications

● Parallel scan:

Demonstrate implementation with not much additional memory



Prefix sums and their applications

● Scan = recurrence:
●     xi = a0 ⊕ a1 ⊕ ... ⊕ ai
●     xi = { a0   ⊕       i = 0
●          { xi-1 ⊕ ai    0 < i < n
● Also parallelisable:
●     xi = { b0             i = 0
●          { aixi-1 + bi    0 < i < n
● Proof sketch...

Last thing to say about parallel scan = expresses recurrence. Can compute any 
linear recurrence as parallel scan



Prefix sums and their applications

● xi = aixi-1 + bi
●    = ai(ai-1xi-2 + bi-1) + bi        # Expand xi-1
●    = (aiai-1)xi-2 + (aibi-1 + bi)    # Collect
● Define:
●     ci        = [ai, bi]
●     cj ● ci   = [aiaj, aibj + bi]  # ● is associative
●                                   # (proof in paper)
●     si-1      = [Ai-1, xi-1]
●     Ai        = aiAi-1
●  => si-1 ● ci = [aiAi-1, aixi-1 + bi]
●               = [Ai, xi]
●               = si                # “scan” recurrence

Proof sketch: introduce new associative operator on 2D vectors, derive “scan” 
recurrence that contains original recurrence in one of the dimensions. NB coefficients 
can be different on every time step (EG function of input data)



Martin, Eric, and Chris Cundy. 
"Parallelizing linear recurrent 

neural nets over sequence 
length." arXiv preprint 
arXiv:1709.04057 (2017).



Martin, 2017

● Recognise connection RNN : parallel scan (!)
● Classify parallelisable RNNs, EG QRNN [1]
● Implement parallel scan CUDA kernel, 9x speed-ups
● Linear recurrence:
●     Only linear within each layer
●     Stack multiple layers + nonlinearities
●     ⇒ Nonlinear dependence on past input tokens    

[1] Bradbury, James, et al. "Quasi-recurrent neural 
networks." arXiv preprint arXiv:1611.01576 (2016).



Martin, 2017

● Introduce GILR: linear recurrence + nonlinear gating    



Martin, 2017

● Results >> LSTM (limited experiments)    



Feng, Leo, et al. "Were rnns all 
we needed?." arXiv preprint 
arXiv:2410.01201 (2024).



Were rnns all we needed?

● Derive simplified LSTM/GRU (“MinLSTM/MinGRU”):
●     (1) Fewer parameters
●     (2) Parallelisable training
●     (3) “surprisingly competitive performance” (abstract)
● NB only MinLSTM vs MinGRU difference:
●     forget and input gates (MinLSTM)
●     single gate (MinGRU)



Were rnns all we needed?



Were rnns all we needed?

You might think MinGRU looks familiar…



Were rnns all we needed?

● “Notably, minGRU is equivalent to GILR but without an 
activation function” ... !?

“GILR” Martin, Eric, and Chris Cundy. 
"Parallelizing linear recurrent neural nets 
over sequence length." arXiv preprint 
arXiv:1709.04057 (2017).

“minGRU” Feng, Leo, et al. "Were rnns all we 
needed?." arXiv preprint arXiv:2410.01201 
(2024).

MinGRU = rip off of GILR in 2017



Were rnns all we needed?

● Linear recurrence/expressivity:
●     1st layer gates
●     = f(current  input)
●     ≠ f(previous input)
●     1st layer output = f(previous input)
●  -> 2+  layer gates  = f(previous input)

First layer gates have limited expressivity. Deeper layer gates are more expressive. 
Reflected in results



Were rnns all we needed?

● Selective copy + RL results: reasonable



Katharopoulos, Angelos, et al. 
"Transformers are rnns: Fast 

autoregressive transformers with 
linear attention." International 
conference on machine learning. 

PMLR, 2020.



Linear attention

● Self-attention = linear dot-product of kernel feature maps 
(not softmax)

● Associativity: O(N2) -> O(N)
● “Our linear transformers achieve similar performance to 

vanilla transformers and they are up to 4000x faster on 
autoregressive prediction of very long sequences”



Linear attention

● Softmax attention:



Linear attention

● “Similarity” attention (generalisation):



Linear attention

● “Kernel” attention (separable similarity):



Linear attention

● “Transformers are RNNs”

Accumulate 
attention 
memory

Accumulate 
“normaliser” 
memory

Compute output

Associative, 
recurrent -> 
parallelisable 
(parallel scan)



Linear attention

● Results: speed = great, performance = reasonable (limited 
comparisons)



Linear attention

● Results: speed = great, performance = reasonable (limited 
comparisons)



Linear attention

● Results: speed = great, performance = reasonable (limited 
comparisons)



Gu, Albert, et al. "Combining 
recurrent, convolutional, and 
continuous-time models with 
linear state space layers." 

Advances in neural information 
processing systems 34 (2021): 

572-585.



Linear state space layers

● Stacked layers of linear state space models
● Position-wise nonlinearities between layers
● Well established theory
●     EG (input : output) ~ convolution (impulse response)

SSMs have much established theory, including “impulse response”



Linear state space layers

● Stacked layers of linear state space models
●     Generalises RNNs + CNNs
●     Preserve information in LRDs (“continuous time 

memorization”)



Linear state space layers

● Discrete approximation for continuous linear SSM
● Recurrence or convolution (can parallelise with FFT)

Connection of FFT vs DFT to parallel scan?



Linear state space layers

● HIPPO theory: choose `A` (closed form) to provably 
memorise LRD

Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial projections." Advances 
in neural information processing systems 33 (2020): 1474-1487.

Connection of FFT vs DFT to parallel scan?



Linear state space layers

● Strong results (selected problems)
●     s/p = sequential/permuted
● Limitation: space complexity

Connection of FFT vs DFT to parallel scan?



Gu, Albert, Karan Goel, and 
Christopher Ré. "Efficiently 
modeling long sequences with 

structured state spaces." arXiv 
preprint arXiv:2111.00396 (2021).



S4

● LSSL: high space complexity
● S4: efficient reparameterisation of SSM
●     Condition `A` with low-rank correction
●     -> Stable diagonalisation
● Strong results:
●     “SoTA on every task from the Long Range Arena”
●     “as efficient as all competitors”
●     “closing the gap to Transformers... performing 

generation 60× faster”



S4

● Parameterise `A` as NPLR
●     Normal: commutes with transpose
●     EG orthogonal, symmetric
● -> Efficient computation using Woodbury identity



S4

● Results:



S4

● Results:



S4

● HIPPO initialisation = important



Smith, Jimmy TH, Andrew 
Warrington, and Scott W. 

Linderman. "Simplified state 
space layers for sequence 
modeling." arXiv preprint 
arXiv:2208.04933 (2022).



S5

● Smith, Jimmy TH, Andrew Warrington, and Scott W. 
Linderman. "Simplified state space layers for sequence 
modeling." arXiv preprint arXiv:2208.04933 (2022).

○ Replace many independent SISO SSMs (S4) with one MIMO SSM
○ Train with parallel scan
○ “match the computational efficiency of S4, while also achieving 

state-of-the-art performance on several long-range sequence modeling 
tasks”



Gu, Albert, and Tri Dao. "Mamba: 
Linear-time sequence modeling 
with selective state spaces." 
arXiv preprint arXiv:2312.00752 

(2023).



MAMBA

● Gu, Albert, and Tri Dao. "Mamba: Linear-time sequence 
modeling with selective state spaces." arXiv preprint 
arXiv:2312.00752 (2023).

●     SSM params = f(input)
●     Train with parallel scan + CUDA kernel fusion
●     No attention/MLP blocks
●     “On language modeling, our Mamba-3B model outperforms 

Transformers of the same size and matches Transformers 
twice its size”



Dao, Tri, and Albert Gu. 
"Transformers are SSMs: 

Generalized models and efficient 
algorithms through structured 
state space duality." arXiv 

preprint arXiv:2405.21060 (2024).



Orvieto, Antonio, et al. 
"Resurrecting recurrent neural 
networks for long sequences." 
International Conference on 
Machine Learning. PMLR, 2023.



Lu, Chris, et al. "Structured 
state space models for in-context 
reinforcement learning." Advances 
in Neural Information Processing 

Systems 36 (2024).


